• Le projet de réacteur thermonucléaire "ITER"

        Hier nous avons vu le principe d'un "tokamak", qui préfigure le principe des réacteurs nucléaires à fusion thermonucléaire. Aujourd'hui nous allons parler d'ITER.

           ITER (“le chemin” en latin, et originellement en anglais : International Thermonuclear Experimental Reactor ) est un prototype de réacteur nucléaire à fusion actuellement en construction à Cadarache près de Manosque et Aix en Provence). Ce prototype est destiné à vérifier la « faisabilité scientifique et technique de la fusion nucléaire comme nouvelle source d’énergie ».

          Nous sommes habitués à voir des programmes de toutes sortes en coopération internationale, mais c’est en général au sein de l’Europe, ou entre pays européens et Etats Unis, mais le programme ITER est étonnant par l’ampleur de la coopération qui englobe les grand spays mondiaux : l’Europe, les USA, la Russie, la Chine, la Corée du Sud, le Japon,  l’Inde, et la Suisse via Euratom. 
           Après de longues discussions le site de Cadarache en France a été choisi pour abriter le réacteur (trois autres sites ayant été en lisse, en Espagne, au Canada et au Japon).et l’accord international a été signé à Moscou le 28 juin 2005, et l’accord définintif a été signé en France le 21 novembre 2006.
         “ITER Organization”, un organisme public, a été officiellement créé le 24 octobre 2007. Il est dirigé par un scientifique japonais.
          Le projet ITER est financé par les pays membres et les résultats seront fournis à tous ces pays. Le coût prévu était de 10 milliards d’euros en 2006, mais a doublé depuis, et  en outre, les divers pays fournissent des prestations en nature.
          C'est actuellement un énorme chantier et les premiers plasmas sont prévus pour 2025.  Le début du fonctionnement expérimental en puissance est prévu pour 2035.
          ITER ne produira pas d’électricité. Son rôle est démontrer que l’utilisation de l’énergie de fusion est possible dans de bonnes conditions de sécurité, en produisant dix fois plus d’énergie que l’on en consomme.
          Si les expérimentations avec ITER portent leur fruit, un autre réacteur de fusion nucléaire pourrait prendre sa place d'ici 2040. Il s'agit de DEMO(pour Demonstration Power Plant), un réacteur qui devrait fonctionner en continu et, contrairement à ITER, être relié au réseau électrique. Comme son nom l'indique, ce sera donc un démonstrateur industriel grâce auquel des prototypes moins coûteux pourraient ensuite être assemblés dans un but commercial. DEMO devrait être en mesure de produire au minimum une énergie de fusion de 2 gigawatts
          La première démonstration de production d'électricité aurait lieu en 2048, puis est prévuela mise en œuvre d'un autre projet, nommé PROTO, qui ferait office de prototype de centrale électrique.

    Le projet de réacteur thermonucléaire "ITER"

     

                  ITER et la sécurité nucléaire.

      Les réacteurs de fission présentent certains risques que nous connaissons bien :
              - Ils peuvent s'emballer en cas de fausse manoeuvre.
    Des sécurités importantes sont mises en place pour éviter un tel accident et il faut, comme à Tchernobyl, être assez inconscient et irresponsable pour court-circuiter les sécurités pour qu’il puisse arriver.
    .         - Un défaut de refroidissement peut faire fondre le coeur comme au Japon.
    Dans les réacteurs français les systèmes de refroidissement sont doublés, voire triplés dans l’EPR, mais au Japon la force du Tsunami avait détruit les arrivées d’eau, l’alimentation électrique, même de secours et les cuves des réacteurs ont été fissurées par le choc de la vague.
             - La production de déchets radioactifs impose un retraitement et un stockage des produits de fission notamment, pour des durées importantes.
    Ce problème diminue peu à peu et est bien moins important que celui des déchets de nos industries chimiques, d’autant plus que les déchets nucléaires signalent leur présence par leur émissions radioactives.
              - En cas de non refroidissement, de l'hydrogène peut se dégager et entraîner une explosion.   
             - Un défaut d'étanchéité de la cuve ou de l'enceinte peut entraîner la dissémination dans l'air et la retombée sur le sol de produits radioactifs, notamment Iode 137, Césium 135 et Strontium 90.
         Il faut donc d’abord essayer de limiter ce dégagement et ensuite avoir des enceintes de confinement très solides, ce qui n’était pas le cas au Japon ( et à Tchernobyl il n’y en avait pas !). De telles enceintes qui existent sur les réacteurs français et américains, ont fait leurs preuves lors de l’accident de Three Miles Island, qui n’a pas entraîné de pollution, malgré la fonte d’un coeur.

        Les réacteurs à fusion sont au contraire très sûrs et très peu polluants.
             - La moindre perturbation au sein du réacteur entraîne un refroidissement et l'arrêt de la réaction, sans possibilité d'emballement. Il n’y a d’ailleurs que quelques grammes de deutérium et de tritium dans l’enceinte à vide (et pas d’oxygène).
        Il ne peut donc pas y avoir d’emballement de la réaction de fusion qui s’arrête d’elle même, ni d’explosion de la chambre.
             - L'équivalent du coeur est le plasma gazeux et ne comporte que quelques grammes de deutérium et tritium radioactifs et les "déchets" sont constitués par de l'hélium, inerte et non radioactif.
        Il n’y a donc pas de déchets radioactifs produits par la réaction, l’hélium est sans danger (inerte chimiquement) et peut être utilisé industriellement et pourrait même être rélâché dans l’atmosphère sans inconvénient.
             - L'enceinte à vide est extrêmement solide et aucune explosion ne peut se produire. Une double enceinte en dépression est facile à réaliser pour éviter toute fuite éventuelle de tritium, qui est un produit radioactif.
        En fait une telle fuite est assez improbable. Elle n’est pas possible dans le réacteur lui même et ne concernerait qu’une quantité négligeable. Elle ne pourrait provenir que des réservoirs et canalisations destinés à alimenter le réacteur, risque que l’on peut techniquement fortement diminuer.
        De plus si l’on produit dans le futur le tritium par action des neutrons sur du Lithium, ce danger disparait presque totalement.   
             - Le seul incident radioactif serait une fuite de tritium, dont la probabilité est faible, et gaz très léger, il se diluerait et monterait rapidement en altitude.
        Cet incident a néanmoins été envisagé dans l'étude de sécurité : les calculs de concentration de tritium dans l'atmosphère montrent que la pollution de l'environnement serait très faible et qu'aucune évacuation de population ne serait à envisager, et la contamination des sols serait nulle.
             - Le seul problème qui subsiste est l'activation de certains composants du réacteur par les neutrons émis, mais c'est un problème local, interne à l'installation, qui peut être facilement défini et maîtrisé. Il s’agit de produits radioactifs d’activité faible et à vie courte et qui n’entraînent que des précautions pour le personnel du réacteur et lors de son éventuel démontage, mais en aucun cas une pollution extérieure, puisqu’il s’agit des matériaux de la chambre et de son enceinte.immédiate.
        Cette activation serait d’ailleurs très réduite en cas d’utilisation du lithium.

        On voit donc que les réacteurs à fusion seraient des engins propres au plan nucléaire, sans risque d’explosion ni de pollution externe et ne produisant pas de déchets radioactifs à vie longue comme les réacteurs à fusion.
        De plus ils constituent une énergie renouvelable car d’une part on pourrait extraire le tritium de l’eau de mer et surtout utiliser le lithium qui est assez abondant (et pourrait d’abord servir dans des batteries électriques).

         Mais ce sont des engins complexes et leur étude est longue. Ces réacteurs ne seront en service que dans la deuxième moitié du siècle, mais c'est la solution d'avenir pour la production d'énergie électrique.

    Le projet de réacteur thermonucléaire "ITER"

     

    Partager via Gmail

  • Commentaires

    Aucun commentaire pour le moment

    Suivre le flux RSS des commentaires


    Ajouter un commentaire

    Nom / Pseudo :

    E-mail (facultatif) :

    Site Web (facultatif) :

    Commentaire :